

# General Description

The MAX4100 evaluation kit (EV kit) simplifies evaluation of the MAX4100 high-speed amplifier. The EV kit circuit demonstrates the MAX4100 in the noninverting unity-gain configuration. RF-style connectors (SMA) and  $75\Omega$  terminating resistors are included for video test equipment compatibility.

The EV kit comes with the MAX4100 installed. To evaluate the MAX4101, simply order a free sample (MAX4101ESA), replace the MAX4100 with the MAX4101 on the EV board, and change the gain-setting resistors for the desired gain. The minimum closed-loop gain for the MAX4101 is +2V/V or -1V/V.

### Component List

| DESIGNATION | QTY | DESCRIPTION                                                                       |  |
|-------------|-----|-----------------------------------------------------------------------------------|--|
| U1          | 1   | Maxim MAX4100ESA                                                                  |  |
| C1, C6      | 2   | 10μF, 10V, 20% tantalum capacitors<br>AVX TAJB106M010 or<br>Sprague 293D106X0010B |  |
| C2, C5      | 2   | 0.1µF, 10% ceramic capacitors<br>Vitramon VJ1206Y104KXX                           |  |
| C3, C4      | 2   | 1000pF, 10% ceramic capacitors<br>Vitramon VJ1206Y102KXX                          |  |
| R1, R2      | 2   | 75Ω, 5% resistors                                                                 |  |
| RF          | 1   | 24Ω, 5% resistor                                                                  |  |
| IN, OUT     | 2   | SMA connectors                                                                    |  |
| None        | 1   | High-frequency-amplifier PC board                                                 |  |
| None        | 1   | MAX4100/MAX4101 data sheet                                                        |  |
| None        | 1   | Shunt                                                                             |  |
| J1          | 1   | 3-pin jumper                                                                      |  |

## Component Suppliers

| SUPPLIER        | PHONE          | FAX            |  |
|-----------------|----------------|----------------|--|
| AVX             | (803) 946-0690 | (803) 626-3123 |  |
| Sprague         | (603) 224-1961 | (603) 224-1430 |  |
| Vishay/Vitramon | (203) 268-6261 | (203) 452-5670 |  |

#### \_Features

- ♦ 500MHz Unity-Gain Bandwidth
- ♦ Optional Adjustable Gain
- ♦ Fully Assembled and Tested

# \_Ordering Information

| PART            | TEMP. RANGE | <b>BOARD TYPE</b> |  |
|-----------------|-------------|-------------------|--|
| MAX4100EVKIT-SO | +25°C       | Surface Mount     |  |

Note: To evaluate the MAX4101, request a MAX4101ESA free sample.

# **Quick Start**

The MAX4100 EV kit is fully assembled and tested. Follow these steps to verify board operation. **Do not turn on the power supply until all connections are completed.** 

- The circuit requires supply voltages of ±5V. Connect these supplies to the corresponding pads marked V+ and V-. Connect the power-supply ground to the pad marked GND.
- Verify that the J1 shunt is across pins 2 and 3 of the 3-pin jumper J1.
- Apply a signal no greater than ±3.5VpK (16dBm) to the SMA connector marked IN.
- 4) Connect the output marked OUT to an oscilloscope through a terminated 75 $\Omega$  cable.
- 5) Turn on the power supply and verify the output signal on the oscilloscope.

# \_Detailed Description

## Voltage-Gain Adjustment

The MAX4100's gain can be adjusted with the following minor modifications to the EV board:

- Referring to Table 1, select the feedback (R<sub>F</sub>) and gain-setting (R<sub>G</sub>) resistors with the desired gain.
- 2) Install R<sub>F</sub> and R<sub>G</sub>.

**Table 1. Gain-Setting Resistors** 

| DEVICE  | GAIN | R <sub>F</sub><br>(Ω) | Rg<br>(Ω) | SMALL-SIGNAL<br>BANDWIDTH (MHz) |
|---------|------|-----------------------|-----------|---------------------------------|
| MAX4100 | 1    | 24                    | Open      | 500                             |
| MAX4101 | 2    | 200                   | 200       | 210                             |
| MAX4101 | 5    | 200                   | 51        | 45                              |
| MAX4101 | 10   | 200                   | 30        | 20                              |

MIXIM

Maxim Integrated Products 1

# **MAX4100 Evaluation Kit**

#### **Layout Considerations**

The MAX4100 EV kit layout has been optimized for high-speed signals, with careful attention given to grounding, power-supply bypassing, and signal-path layout. The small, surface-mount, ceramic bypass capacitors C2–C5 have been placed as close to the MAX4100 supply pins as possible. The unused pins have been grounded to prevent unwanted noise from coupling into the circuit. Refer to the *Layout and Power-Supply Bypassing* section of the MAX4100 data sheet for details.

#### **Shutdown Control**

The MAX4100/MAX4101 EV kit is a standard EV kit used for many of Maxim's high-speed op amps. As a result, a shutdown (SHDN) function is incorporated on the EV kit, but does not apply to the MAX4100/MAX4101. Because the shutdown control is not applicable to the MAX4100/MAX4101, verify that a shunt is connected to pins 2 and 3 of jumper J1.

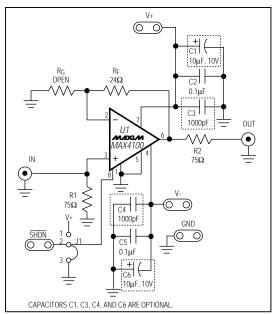



Figure 1. MAX4100 EV Kit Schematic

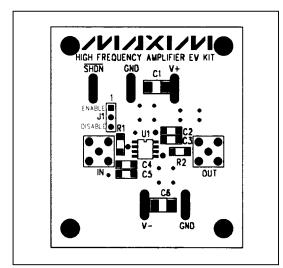



Figure 2. MAX4100 EV Kit Component Placement Guide—Component Side

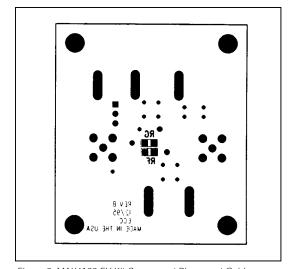



Figure 3. MAX4100 EV Kit Component Placement Guide—Solder Side

# **MAX4100 Evaluation Kit**

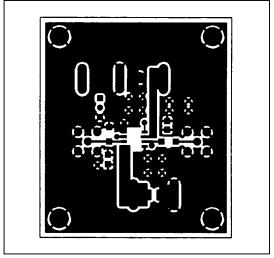



Figure 4. MAX4100 EV Kit PC Board Layout—Component Side

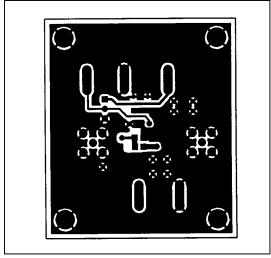



Figure 5. MAX4100 EV Kit PC Board Layout—Solder Side

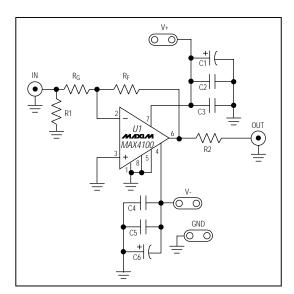



Figure 6. Inverting Schematic (for PCB Layout of Figures 7-10)\*

<sup>\*</sup> The Inverting Gain Configuration layouts and schematic are shown for reference only. The PC board supplied does not include the inverting configuration.

# **MAX4100 Evaluation Kit**

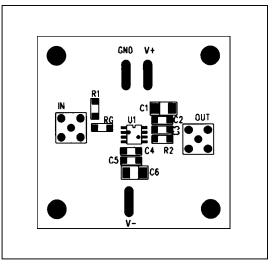



Figure 7. Inverting Gain Configuration, Component Placement Guide—Component Side\*

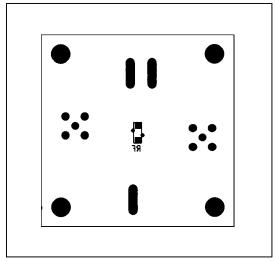



Figure 8. Inverting Gain Configuration, Component Placement Guide—Solder Side\*

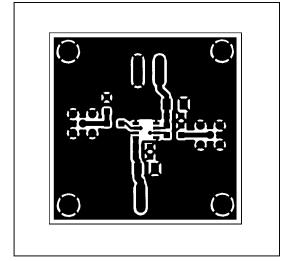



Figure 9. Inverting Gain Configuration, PC Board Layout—Component Side\*

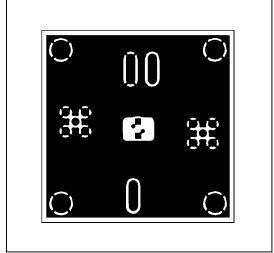



Figure 10. Inverting Gain Configuration, PC Board Layout—Solder Side\*

<sup>\*</sup> The Inverting Gain Configuration layouts and schematic are shown for reference only. The PC board supplied does not include the inverting configuration.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

<sup>4</sup> \_\_\_\_\_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600